Untangling the Effects of Codon Mutation and Amino Acid Exchangeability
نویسندگان
چکیده
Determining the relative contributions of mutation and selection to evolutionary change is a matter of great practical and theoretical significance. In this paper, we examine relative contributions of codon mutation rates and amino acid exchangeability on the frequencies of each type of amino acid difference in alignments of distantly related proteins, alignments of closely related proteins, and among human SNPs, using a model that incorporates prior estimates of mutation and exchangeability parameters. For the operational exchangeability of amino acids in proteins, we use EX, a measure of protein-level effects from a recent statistical meta-analysis of nearly 10,000 experimental amino acid exchanges. EX is both free of mutational effects and more powerful than commonly used "biochemical distance" measures (1). For distant protein relationships, mutational effects (genetic code, transition/transversion bias) and operational exchangeability (EX) account for roughly equal portions of variance in off-diagonal values, the complete model accounting for R2 = 0.35 of the variance. For human/chimpanzee alignments representing closely related proteins relationships, mutational effects (including CpG bias) account for 0.52 of the variance; adding EX to the model increases this to 0.67. For natural variation in human proteins, the variance explained by mutational effects alone, and by mutational effects and operational exchangeability are, respectively, 0.66 and 0.70 for SNPs in HGVBase, and 0.56 and 0.60 for disease-causing missense variants in HGMD. Thus, exchangeability has a stronger relative effect for distant protein evolution than for the cases of closely related proteins or of population variation. A more detailed model for the hominid data suggests that 1) there is a threshold in EX below which substitutions are highly unlikely to be accepted, corresponding to roughly 30 % relative protein activity; 2) selection against missense mutants is a slightly convex function of protein activity, not changing much as long as protein activity is low; and 3) the probability of disease-causing effects decreases nearly linearly with EX.
منابع مشابه
Investigation of Solvent Effect on CUA Codon Mutation: NMR Shielding Study
P53 is one of the gene that has important role in human cell cycle and in the human cancers too.Models of codon substitution make it possible to separate mutational biases in the DNA fromselective constraints on the protein, and offer a great advantage over amino acid models forunderstanding the evolutionary process of proteins and protein-coding DNA sequences. In thiswork, we investigated abou...
متن کاملStudy of pH influence on the stability of 175th codon of P53 genes by computational and modeling methods
P53 tumor suppressor gene, also known as “genome guardian” is mutated in more than half of allkind of cancers. In this study we have investigated the controls of environmental pH for P53 genemutation in point of specific sequence which is prone to mutagenesis. The most probable cancerousmutations occur as point mutations in exons 5-8 of P53 gene. The 175th codon of P53 is the thirdmost mutated ...
متن کاملThe exchangeability of amino acids in proteins.
The comparative analysis of protein sequences depends crucially on measures of amino acid similarity or distance. Many such measures exist, yet it is not known how well these measures reflect the operational exchangeability of amino acids in proteins, since most are derived by methods that confound a variety of effects, including effects of mutation. In pursuit of a pure measure of exchangeabil...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملCodon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis
Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2005